Diseases and Cures in the Wings of Houseflies
This article or section is being renovated. Lead = 1 / 4
Structure = 2 / 4
Content = 3 / 4
Language = 2 / 4
References = 2 / 4
|
This article analyzes the claim that the sahih hadiths concerning the wings of the housefly are scientifically accurate.
Apologetic Claim
The thesis put forward is that it has recently been proven by modern science that flies carry not only pathogens but also the agents that limit these pathogens, thus proving the fly wing hadiths (as narrated from Abu Hurayra and Abu Sa`id al-Khudri by al-Bukhari and in the Sunan):
They principally identify these agents to be bacteriophages, though they also sometimes refer to fungi.
Analysis
Bacteriophages (“phages”) are viruses that infect bacteria. It is a generality that all natural bacterial populations are limited by phages and environmental conditions, but it is a leap to suggest that these elements are antidotes. Mammals, too, are limited by pathogens, but it is foolish to suggest these pathogens are antidotal to mammals. Nevertheless, a dissection of the fly wing hadiths is as follows:
Which wing contains the venom and which the antidote?
Ibn Hajar wrote in his commentary on the hadith:
This statement is evidently mistaken, but is also what must be the starting point in debating on this subject. For if they say that the presence of phages proves that the hadith is correct, then pointing out that phages are not limited to any one wing, right or left, immediately proves the falsehood in the hadiths.
Making erroneous assumptions
A. It is assumed that bacteriophages are antidotal to bacteria. Bacteriophages cause lysis of their bacterial hosts in the final stage of infection – thereby releasing new phage particles to infect other bacterial cells in the population. However, in the natural environment, this state is equilibrial – meaning that only a small proportion of bacterial cells is infected at any one time. Just like only a small proportion of humans is ever infected with the flu virus at any one time (except in a pandemic).[1]
B. It is assumed that flies must carry the antidote to the pathogens they carry.
Flies do not succumb to human pathogens – they are merely carriers. This shows that those who make these claims do not understand pathogenesis. Flies do not succumb to human diseases.
The way it works is as follows:
- Fly lands on feces or rotting carcass – transfers traces of feces or rotting carcass onto itself.
- Fly lands on human food – transfers traces of feces or rotting carcass onto human food.
- Fly flies away – human consumes contaminated food and becomes sick.
- Fly continues on as normal, free to repeat the cycle again.
C. It is assumed that these relations that do not exist.
The ability to design antibiotics that might utilize bacteriophage infection pathways does not prove that phages are antidotal to bacteria. Antibiotics are not phages. Further, these antibiotics are likely to be ‘artificial’ and do not reflect the natural state of fly-human disease interactions.
Making erroneous claims
There are two mistakes here:
A. The common fly does not carry malaria – that is carried by and transmitted exclusively through the bites of Anopheles mosquitoes.[2]
B. There is no such thing as bacteriophagic fungi. This term may sound impressive to non-scientists, but bacteriophages are viruses and fungi are simply fungi.
Quoting erroneous scientific articles
A. Bacteriophages do not attack other viruses.[3]
B. Not all bacteriophages encode cell-wall destroying proteins to lyse host cells.
Misinterpreting scientific facts
This states that the microbiota of insects protect them from their (i.e. insect) pathogens. It does not say anything about human pathogens carried by insects.
This has just proven the existence of bacteriophages. What it has not proven is whether these bacteriophages protect humans against human pathogens carried by flies.
Extending claims inappropriately
Now it is not only phages on the right wing, but the yeast cells inside fly stomachs and respiratory tubules. We assume it is the yeast antibiotics they are referring to. The presence of tiny amounts of antibiotics (produced by fungi) does not protect humans from enteric diseases. Apologists are confused about antibiotics – they do not understand how antibiotics work. Dosage is important. Modern antibiotics are artificial and highly purified. Treatment of bacterial infections involves massive doses of purified antibiotics that are not found in the natural environment.
Confusing the use of bacteriophage
A. The O1-phage is used for typing (i.e. diagnosing) Salmonella infections, not treating it.[4]
B. Bacteriophage therapy was subsumed by antibiotic therapy in the 1940s because it was largely ineffective. Before antibiotics, physicians were desperate for cures – they would try anything, even bacteriophage therapy – but that does not prove bacteriophage therapy works. In any event, one would need massive doses of phages to treat each case – which does not occur in the natural environment. A fly dipping its right wing, left wing, or its entire body, will not be sufficient.
Failure to understand what is purported as proof
A. This article they quote and link to highlights one of the main limitations of bacteriophages in therapeutics, i.e. it is rapidly taken up by the human body and destroyed in human spleen cells. Therefore, even when a fly should carry bacteriophages, normal human physiology precludes these phages from acting as antidotes.
B. Even if some biotechnology companies want to develop bacteriophage-based treatments, it does not prove the hadith to be correct. These bacteriophage-based treatments involve the use of genetic engineering and other advanced scientific techniques to utilize bacteriophage pathogenesis for the treatment of human diseases. Naturally-occurring bacteriophages are useless for this purpose.
Ignoring non-bacterial enteric diseases
Even if the wings of flies were to provide humans with an antidote to bacterial diseases, they could possibly infect humans with another non-bacterial disease. Flies also spread pinworm, tapeworm, viral gastroenteritis, amebic dysentery, giardia enteritis, and enteric hepatitis. Bacteriophages and fungi are totally ineffective against these diseases.
Conclusion
The scientific evidence does not support the veracity of the fly wing hadith for the following reasons:
1. Contrary to innovative interpretations of relevant hadith, bacteriophages are not limited to any specific wing of the fly.
2. Contrary to innovative interpretations of relevant hadith, bacteriophages in the natural state and concentration are not antidotal to bacterial diseases, particularly for temperate or lysogenic phages.
3. Bacteriophages are ineffective against non-bacterial diseases carried by flies, meaning even if the wings were to provide you with an antidote to bacterial diseases, they could infect you with another non-bacterial disease (i.e. dipping a fly into your drink is not good advice).
4. Phage therapy is not a generally-accepted medical therapy at present because it is largely ineffective and requires large quantities of purified, possibly genetically-engineered, phages not present in the natural condition.
Responses to Apologetics
- According to Nature.com, it has been discovered that "Insect wings shred bacteria to pieces."
The article in question is referring to the wings of a cicada.[5] A cicada is not the same thing as a house fly. Cicadas are related to locusts and crickets which are vegetarian unlike the excrement friendly housefly. If you examine a housefly wing under a microscope you will see that a housefly's wing structure is different to that of the cicada's wing. The housefly wing is smoother and has fine hairs which are curled downwards not like the upward pointing spikes of the cicada.
See Also
- Health - A hub page that leads to other articles related to Health
External Links
- Teachings of the Hadith: The wings of the fly - Answering Islam (archived), http://www.answering-islam.org/Quran/Science/flies.html
- Islamic science has come to this pitiful end - PZ Myers, Pharyngula, January 29, 2012 (archived), http://freethoughtblogs.com/pharyngula/2012/01/29/islamic-science-has-come-to-this-pitiful-end/
Resources on Bacteriophage Biology
A good general introduction to bacteriophage biology can be obtained from the internet, including the following:
- Bacteriology: Bacteriophage - Dr. Gene Mayer, University of South Carolina School of Medicine, February 17, 2010 (archived), http://pathmicro.med.sc.edu/mayer/phage.htm
- Biochemistry 3107: Bacteriophage - Martin E. Mulligan, Memorial University of Newfoundland Department of Biochemistry, Fall 2002 (archived), http://web.archive.org/web/20080706112118/http://www.mun.ca/biochem/courses/3107/Lectures/Topics/bacteriophage.html
- Bacteriophage - Wikipedia, accessed July 28, 2013 (archived), http://en.wikipedia.org/wiki/Bacteriophage
- An Expanded Overview of Phage Ecology - Stephen T. Abedon, Ohio State University at Mansfield Bacteriophage Ecology Group, January 1, 2002 (archived), http://www.mansfield.ohio-state.edu/~sabedon/bgnws011_submission.htm
- Bacteriophage - Encyclopædia Britannica Online, March 3, 2006 (archived), http://web.archive.org/web/20060303192319/http://www.britannica.com/nobel/micro/45_23.html
- Bacteriophage - The Columbia Encyclopedia, Sixth Edition, 2001-07 (archived), http://web.archive.org/web/20090220004127/http://bartleby.com/65/ba/bacterio.html
- The Lytic Life Cycle - Dr. Gary Kaiser, Community College of Baltimore County, January 16, 2002 (archived), http://web.archive.org/web/20060522093342/http://www.cat.cc.md.us/courses/bio141/lecguide/unit2/viruses/lytlc.html
References
- ↑ Stephen T. Abedon, "An Expanded Overview of Phage Ecology", Ohio State University at Mansfield Bacteriophage Ecology Group, January 1, 2002 (archived), http://www.mansfield.ohio-state.edu/~sabedon/bgnws011_submission.htm.
- ↑ "Malaria", World Health Organization Media Centre, Fact sheet No. 94, Reviewed March 2013 (archived), http://www.who.int/mediacentre/factsheets/fs094/en/.
- ↑ Dr. Gary Kaiser, "The Lytic Life Cycle", Community College of Baltimore County, January 16, 2002 (archived), http://web.archive.org/web/20060522093342/http://www.cat.cc.md.us/courses/bio141/lecguide/unit2/viruses/lytlc.html.
- ↑ "Typing of Salmonellae", Avinash Abhyankar, Internet Archive capture dated October 27, 2009 (archived), http://web.archive.org/web/20091027101854/http://www.geocities.com/avinash_abhyankar/typing.htm.
- ↑ Trevor Quirk, "Insect wings shred bacteria to pieces", Nature, March 4, 2013 (archived), http://www.nature.com/news/insect-wings-shred-bacteria-to-pieces-1.12533.