The Quran and Mountains: Difference between revisions

no edit summary
[checked revision][checked revision]
No edit summary
Line 98: Line 98:


===The function of pegs vs. that of mountains===
===The function of pegs vs. that of mountains===
==== General arguments ====
Some advocates of the miracle argue that where mountains result from the collision of tectonic plates, they also cause the stability of the Earth. One advocates of the miracle writes as follows:{{Quote||Modern geologists describe the folds in the Earth as giving foundations to the mountains, and their dimensions go roughly one mile to roughly 10 miles. The stability of the Earth's crust results from the phenomenon of these folds.}}Critics, in response, point out the difference between cause and effect, suggesting that the advocates conflate the two, and describe how the formation of mountains is an incidental result of the collision of the tectonic plates, an event which in fact causes rather than prevents earthquakes. The mountains generated at these fault lines are a product of the tectonic collision and cannot be said to in any sense prevent it from taking place.  
Some advocates of the miracle argue that where mountains result from the collision of tectonic plates, they also cause the stability of the Earth. One advocates of the miracle writes as follows:{{Quote||Modern geologists describe the folds in the Earth as giving foundations to the mountains, and their dimensions go roughly one mile to roughly 10 miles. The stability of the Earth's crust results from the phenomenon of these folds.}}Critics, in response, point out the difference between cause and effect, suggesting that the advocates conflate the two, and describe how the formation of mountains is an incidental result of the collision of the tectonic plates, an event which in fact causes rather than prevents earthquakes. The mountains generated at these fault lines are a product of the tectonic collision and cannot be said to in any sense prevent it from taking place.  


Line 106: Line 108:
To these advocates, critics respond that there is no scientific evidence which suggests that mountains slow down tectonic collisions in any meaningful way. And, while it is inevitably the case that the crumpling of the crust which forms the mountains throughout the collision somehow 'dampens' the impact, there is no evidence that the resultant mountains stabilize either plate (it is also difficult to interpret what this could possible mean, as the mountains do not exist prior to the collision in any case, and so could not, again, meaningfully 'prevent' it). Moreover, the critics add, if any of the above is in fact the case, then these mountains are not acting in any capacity that can be describes as peg-like (a better analogy might be the bumper of a car, which crumples upon collision to save the driver, for instance, from being crumpled - but this has nothing to do with pegs and does not serve the purpose of 'stabilization').  
To these advocates, critics respond that there is no scientific evidence which suggests that mountains slow down tectonic collisions in any meaningful way. And, while it is inevitably the case that the crumpling of the crust which forms the mountains throughout the collision somehow 'dampens' the impact, there is no evidence that the resultant mountains stabilize either plate (it is also difficult to interpret what this could possible mean, as the mountains do not exist prior to the collision in any case, and so could not, again, meaningfully 'prevent' it). Moreover, the critics add, if any of the above is in fact the case, then these mountains are not acting in any capacity that can be describes as peg-like (a better analogy might be the bumper of a car, which crumples upon collision to save the driver, for instance, from being crumpled - but this has nothing to do with pegs and does not serve the purpose of 'stabilization').  


===Mountains stabilize the earth because plate movements are impeded by their formation===
====Arguments presented by Professor El Nagger====


{{Quote||The sea-deep roots stabilize the continental masses (or plates), as plate motions are almost completely halted by their formation, especially when the mountain mass is finally entrapped within a continent as an old craton.<ref name="El Naggar">Dr. Zaghlool El-Naggar PhD - [{{Reference archive|1=http://www.elnaggarzr.com/en/main.php?id=54|2=2011-10-02}} The Mountains as Stabilizers for the Earth] - September 24, 2002</ref>}}
{{Quote||The sea-deep roots stabilize the continental masses (or plates), as plate motions are almost completely halted by their formation, especially when the mountain mass is finally entrapped within a continent as an old craton.<ref name="El Naggar">Dr. Zaghlool El-Naggar PhD - [{{Reference archive|1=http://www.elnaggarzr.com/en/main.php?id=54|2=2011-10-02}} The Mountains as Stabilizers for the Earth] - September 24, 2002</ref>}}
====Analysis====


Professor El Naggar also seems to have confused Cause and Effect. Plate motions are almost completely halted not by collisional-type mountain formation (effect) but by the opposing plates.  
Professor El Naggar also seems to have confused Cause and Effect. Plate motions are almost completely halted not by collisional-type mountain formation (effect) but by the opposing plates.  
Line 124: Line 124:
In other words, mountains do not keep the earth from shaking. Their formation caused and still causes the surface of the earth to shake.
In other words, mountains do not keep the earth from shaking. Their formation caused and still causes the surface of the earth to shake.


===Mountain stabilize the lithospheric plates by sinking into the asthenosphere===
=====Mountain stabilize the lithospheric plates by sinking into the asthenosphere=====


{{Quote|1=|2=The stabilization of lithospheric plates by mountains is effected by their sinking deeply into the zone of weakness of the Earth (the asthenosphere) as wooden pegs sink into the ground to stabilize the corners of a tent. Such a process of stabilization cannot take place without the presence of a viscous, plastic material under the outer rocky cover of the Earth, into which the mountains "roots" can float. In as much as the ship casts its anchor into the anchorage of a port to avoid the dangers of rolling and swaying by winds and waves, the Glorious Quran uses the term "Rawasi" (=moorings or firm anchors) to describe mountains. Such firm anchors do not only stabilize the lithospheric plates, but also the whole planet in its spinning around its own axis (nutation, recession, etc.).<ref name="El Naggar"></ref>}}
{{Quote|1=|2=The stabilization of lithospheric plates by mountains is effected by their sinking deeply into the zone of weakness of the Earth (the asthenosphere) as wooden pegs sink into the ground to stabilize the corners of a tent. Such a process of stabilization cannot take place without the presence of a viscous, plastic material under the outer rocky cover of the Earth, into which the mountains "roots" can float. In as much as the ship casts its anchor into the anchorage of a port to avoid the dangers of rolling and swaying by winds and waves, the Glorious Quran uses the term "Rawasi" (=moorings or firm anchors) to describe mountains. Such firm anchors do not only stabilize the lithospheric plates, but also the whole planet in its spinning around its own axis (nutation, recession, etc.).<ref name="El Naggar"></ref>}}
====Analysis====


Again, this is only Professor El Naggar’s opinion and a confusion of cause and effect. To date, no one has provided the scientific evidence derived by Professor El Naggar or anyone else to prove mountains actually stabilize the lithospheric plates.  
Again, this is only Professor El Naggar’s opinion and a confusion of cause and effect. To date, no one has provided the scientific evidence derived by Professor El Naggar or anyone else to prove mountains actually stabilize the lithospheric plates.  
Line 136: Line 134:
In fact, cratons are stable regions of the earth's crust that are no longer subject to mountain building processes. These craton roots or keels were formed by depletion of basaltic elements into the asthenosphere, leading to less dense material that sinks deeper into the mantle due to the lower buoyancy (i.e. isostacy {of the crust, not mountains} at work). <ref>Sankaran, A.V. - [{{Reference archive|1=http://www.ias.ac.in/currsci/nov102001/1158.pdf|2=2011-10-02}} CURRENT SCIENCE] - VOL. 81, NO. 9, 10 NOVEMBER 2001 pp. 1158-1160</ref>
In fact, cratons are stable regions of the earth's crust that are no longer subject to mountain building processes. These craton roots or keels were formed by depletion of basaltic elements into the asthenosphere, leading to less dense material that sinks deeper into the mantle due to the lower buoyancy (i.e. isostacy {of the crust, not mountains} at work). <ref>Sankaran, A.V. - [{{Reference archive|1=http://www.ias.ac.in/currsci/nov102001/1158.pdf|2=2011-10-02}} CURRENT SCIENCE] - VOL. 81, NO. 9, 10 NOVEMBER 2001 pp. 1158-1160</ref>


===Mountains prevent earthquakes===
===The relationship between mountains and earthquakes===
 
====Analysis====
 
As early as the 1920s, scientists noted that earthquakes are concentrated in very specific narrow zones (Wadati-Benioff zones). In 1954, French seismologist J.P. Rothé published this map showing the concentration of earthquakes along the zones indicated by dots and cross-hatched areas.<ref>[{{Reference archive|1=http://pubs.usgs.gov/gip/dynamic/zones.html|2=2011-10-02}} Earthquake zones] - U.S. Geological Survey</ref>
 
 
<center>[[File:Map by J.P. Rothé.gif|500px]]</center>


As early as the 1920s, scientists noted that earthquakes are concentrated in very specific narrow zones (Wadati-Benioff zones). In 1954, French seismologist J.P. Rothé published this map showing the concentration of earthquakes along the zones indicated by dots and cross-hatched areas.<ref>[{{Reference archive|1=http://pubs.usgs.gov/gip/dynamic/zones.html|2=2011-10-02}} Earthquake zones] - U.S. Geological Survey</ref><center>[[File:Map by J.P. Rothé.gif|500px]]</center>


Note how the earthquakes originate mainly from the edges of tectonic plates, including collisional mountain ranges and ocean trenches and ridges, thus suggesting that mountains do not stabilize the crust or the earth.  
Note how the earthquakes originate mainly from the edges of tectonic plates, including collisional mountain ranges and ocean trenches and ridges, thus suggesting that mountains do not stabilize the crust or the earth.  


Further evidence is provided by a detailed look at the Himalayan mountain range which shows that it is closely associated with earthquakes, thus proving mountains do not prevent earthquakes.  
Further evidence is provided by a detailed look at the Himalayan mountain range which shows that it is closely associated with earthquakes, thus proving mountains do not prevent earthquakes.  
<center>[[File:Seis-states.gif]]</center>
<center>[[File:Seis-states.gif]]</center>
{{Quote|[{{Reference archive|1=http://asc-india.org/menu/seismi.htm|2=2011-10-02}} Seismicity of South Asia]<BR>Amateur Seismic Centre|Why do earthquakes happen here?  
{{Quote|[{{Reference archive|1=http://asc-india.org/menu/seismi.htm|2=2011-10-02}} Seismicity of South Asia]<BR>Amateur Seismic Centre|Why do earthquakes happen here?  
The Indian subcontinent lies upon the Indian Plate. This plate is moving northward at about 5 centimetres per year and in doing so, collides with the Eurasian Plate. Upon the Eurasian Plate lie the Tibet plateau & central Asia. '''Due to this mammoth collision, the Himalayas are thrust higher and very many earthquakes are generated in the process. This is the cause of earthquakes from the Himalayas to the Arakan Yoma.''' The same process, though involving the Indian Plate and the Burmese Micro-plate results in earthquakes in the Andaman & Nicobar Islands. Sometimes earthquakes of different magnitudes occur within the Indian Plate, in the peninsula and in adjoining parts of the Arabian Sea or the Bay of Bengal. These arise due to localized systems of forces in the crust sometimes associated with ancient geological structures such as in the Rann of Kachchh.}}  
The Indian subcontinent lies upon the Indian Plate. This plate is moving northward at about 5 centimetres per year and in doing so, collides with the Eurasian Plate. Upon the Eurasian Plate lie the Tibet plateau & central Asia. '''Due to this mammoth collision, the Himalayas are thrust higher and very many earthquakes are generated in the process. This is the cause of earthquakes from the Himalayas to the Arakan Yoma.''' The same process, though involving the Indian Plate and the Burmese Micro-plate results in earthquakes in the Andaman & Nicobar Islands. Sometimes earthquakes of different magnitudes occur within the Indian Plate, in the peninsula and in adjoining parts of the Arabian Sea or the Bay of Bengal. These arise due to localized systems of forces in the crust sometimes associated with ancient geological structures such as in the Rann of Kachchh.}}  
Line 175: Line 163:
Let’s examine the case of the largest earthquake ever recorded; the Chilean earthquake of 1960:
Let’s examine the case of the largest earthquake ever recorded; the Chilean earthquake of 1960:


{{Quote|[{{Reference archive|1=http://earthquake.usgs.gov/earthquakes/world/events/1960_05_22_articles.php|2=2011-10-02}} Historic Earthquakes]<BR>U.S. Geological Survey, March 29, 2010|Chile<BR>1960 May 22 19:11:14 UTC <BR>Magnitude 9.5 <BR>The Largest Earthquake in the World <BR><BR>More than 2,000 killed, 3,000 injured, 2,000,000 homeless, and $550 million damage in southern Chile; tsunami caused 61 deaths, $75 million damage in Hawaii; 138 deaths and $50 million damage in Japan; 32 dead and missing in the Philippines; and $500,000 damage to the west coast of the United States.}}  
{{Quote|[{{Reference archive|1=http://earthquake.usgs.gov/earthquakes/world/events/1960_05_22_articles.php|2=2011-10-02}} Historic Earthquakes]<BR>U.S. Geological Survey, March 29, 2010|Chile<BR>1960 May 22 19:11:14 UTC <BR>Magnitude 9.5 <BR>The Largest Earthquake in the World <BR><BR>More than 2,000 killed, 3,000 injured, 2,000,000 homeless, and $550 million damage in southern Chile; tsunami caused 61 deaths, $75 million damage in Hawaii; 138 deaths and $50 million damage in Japan; 32 dead and missing in the Philippines; and $500,000 damage to the west coast of the United States.}}<center>[[File:Chilean Earthquake of 1960.gif]]</center>
 
 
<center>[[File:Chilean Earthquake of 1960.gif]]</center>
 


The Andes Mountains did not seem to prevent or stabilize this earthquake. In fact, it is the collision between the Nazca and South American tectonic plates that causes these earthquakes and raises the Andes mountains.  
The Andes Mountains did not seem to prevent or stabilize this earthquake. In fact, it is the collision between the Nazca and South American tectonic plates that causes these earthquakes and raises the Andes mountains.  


{{Quote|[{{Reference archive|1=http://www.moorlandschool.co.uk/earth/tectonic.htm|2=2011-10-02}} Plate tectonics]<BR>Earth Science From Moorland School|This is a convergent plate boundary, the plates move towards each other. The amount of crust on the surface of the earth remains relatively constant. Therefore, when plates diverge (separate) and form new crust in one area, the plates must converge (come together) in another area and be destroyed. An example of this is the Nazca plate being subducted under the South American plate to form the Andes Mountain Chain.}}
{{Quote|[{{Reference archive|1=http://www.moorlandschool.co.uk/earth/tectonic.htm|2=2011-10-02}} Plate tectonics]<BR>Earth Science From Moorland School|This is a convergent plate boundary, the plates move towards each other. The amount of crust on the surface of the earth remains relatively constant. Therefore, when plates diverge (separate) and form new crust in one area, the plates must converge (come together) in another area and be destroyed. An example of this is the Nazca plate being subducted under the South American plate to form the Andes Mountain Chain.}}
<center>[[File:Platetecmap.gif]]</center>
<center>[[File:Platetecmap.gif]]</center>


Hence the proposition that mountains prevent earthquakes is false.
Hence the proposition that mountains prevent earthquakes is false.


===Mountains stabilize the earth through isostacy===
===Mountains stabilize the earth through isostacy===
====Analysis====


This is a classical misconception of George Airy’s model of Isostacy and the logical fallacy of “Composition” (i.e. generalization of the specific case to the general). Just because the mountains are themselves stabilized by isostacy does not mean that the mountains stabilize the earth or the crust by isostacy. Every element in the earth’s crust is governed by the same physical laws – in fact the crust ‘floats’ on the upper mantle and is thus self-stabilizing according to its own isostacy, not that of mountains.  
This is a classical misconception of George Airy’s model of Isostacy and the logical fallacy of “Composition” (i.e. generalization of the specific case to the general). Just because the mountains are themselves stabilized by isostacy does not mean that the mountains stabilize the earth or the crust by isostacy. Every element in the earth’s crust is governed by the same physical laws – in fact the crust ‘floats’ on the upper mantle and is thus self-stabilizing according to its own isostacy, not that of mountains.  
Line 205: Line 184:


When shown evidence that collisional-type mountains are associated with earthquakes some Muslims will then claim that the Qur'anic verses do not refer to earthquakes at all. They will claim that tameeda also means stagger, roll, sway, or tilt, and that there's significant difference between them and the short sharp shock of an earthquake (i.e. tameeda refers to some phenomenon, assumed to be associated with geological timescale, that is presently unknown to and undefined by our present understanding of geological science).  
When shown evidence that collisional-type mountains are associated with earthquakes some Muslims will then claim that the Qur'anic verses do not refer to earthquakes at all. They will claim that tameeda also means stagger, roll, sway, or tilt, and that there's significant difference between them and the short sharp shock of an earthquake (i.e. tameeda refers to some phenomenon, assumed to be associated with geological timescale, that is presently unknown to and undefined by our present understanding of geological science).  
====Analysis====


The relevant verses are as follows:  
The relevant verses are as follows:  
Line 229: Line 206:


Apologists claim that the stabilization is over a geological timescale because of the term ‘tameeda’ as opposed to ‘zalzala’.  
Apologists claim that the stabilization is over a geological timescale because of the term ‘tameeda’ as opposed to ‘zalzala’.  
====Analysis====


For the same reason as the previous section, the term ‘stabilize’ must mean ‘prevent earthquakes’ as tameeda cannot be associated with geological timescales.
For the same reason as the previous section, the term ‘stabilize’ must mean ‘prevent earthquakes’ as tameeda cannot be associated with geological timescales.
Line 255: Line 230:


*[[Scientific Miracles in the Quran]]
*[[Scientific Miracles in the Quran]]
*[[Scientific Errors in the Quran]]


==References==
==References==
Line 261: Line 237:
[[Category:Islam and Science]]
[[Category:Islam and Science]]
[[Category:Qur'an]]
[[Category:Qur'an]]
[[Category:Hector]]
{{page_title|The Qur'an and Mountains}}
{{page_title|The Qur'an and Mountains}}
[[ru:Корни гор]]
[[ru:Корни гор]]
[[Category:Apologetics]]
[[Category:Criticism of Islam]]
[[Category:Cosmology]]
Editors, recentchangescleanup, Reviewers
6,632

edits